Regulatory Network (Substrate Depletion)

4461 days ago by comphy

## This sheet simulates a 'substrate depletion' regulatory network var('k0 k00 k1 k11 k2 k22 k3 k33 k4 k44') var('J1 J2 J3 J4') var('X R S E t') var('X0 R0 S0 E0') ## INITIAL CONDITIONS X0 = 5 ## 1.5 5 R0 = 0.1 ## .2 2.1 S0 = 0.000 ## t0 = 0.000 ## ## CONSTANTS k0 = 1 k00 = 0.000 # 0.01 k1 = 1 k2 = 1 k3 = 1 k4 = 1 J3 = 0.05 J4 = 0.5 S = 0.2 ## CALCULATION PARAMETERS end_points = 100 stepsize = 0.1 steps = end_points/stepsize dvar = [X,R] ivar = t ics = [t0,X0,R0] ## EQUATIONS G(u,v,J,K) = (2*u*K)/(v-u+v*J+u*K+sqrt((v-u+v*J+u*K)^2-4*(v-u)*u*K)) E = G(k3*R,k4,J3,J4) r1 = (diff(X,t) == k1*S-(k00+k0*E)*X) r2 = (diff(R,t) == (k00+k0*E)*X-k2*R) ## NUMERICAL SOLUTION OF A SERIES OF DIFFERENTIAL EQUATIONS des = [r1.rhs(), r2.rhs()] sol = desolve_system_rk4(des,dvar,ics,ivar=t,end_points=end_points,step=stepsize) #show(sol) 
       
sols_1=[] sols_2=[] for i in range(steps): sols_1.append([sol[i][0],sol[i][1]]) sols_2.append([sol[i][0],sol[i][2]]) ################################################ #### Unnecessarily Fancy Plotting Stuff #### ################################################ ## Create a plot object a = plot([]) ## Set the plot parameters title = "Substrate Depletion Regulatory Network" ## Graph Title xmin = 0 ## X minimum xmax = end_points ## X maximum ymin = 0 ## Y minimum ymax = 5 ## Y maximum ## Add a title to the plot a += text(title,(xmax/1.8,ymax),color='black',fontsize=15) ## Add the desired lines to the plot a += list_plot(sols_1,color='orange',legend_label='[X]') a += list_plot(sols_2,color='purple',legend_label='[R]') ## For more information on plots in general, evaluate 'plot?' ## For a list of legend options, evaluate 'a.set_legend_options?' ## For a list of Sage predefined colors, evaluate 'sorted(colors)' a.set_axes_range(xmin,xmax,ymin,ymax) a.axes_labels(['time','concentration']) a.axes_label_color('grey') a.set_legend_options(ncol=2,borderaxespad=5,back_color='whitesmoke',fancybox=true) show(a) 
       

                                
                            

                                
sols_0 = [] ## Grab a slice of steady-state oscillations for later use for i in range(steps*0.8,steps): sols_0.append([sols_1[i][1],sols_2[i][1]]) 
       
## This section finds roots (of dX/dt) and plots them sols_1 = [] m = 0 n = 0 ad = 0 root = 0 ## S has been swapped for X! Smin = 0 ## minimum value of S to plot Smax = 3 ## maximum value of S to plot dS = 0.02 ## the interval upon which S is plotted Rmin = 0 ## minimum value of R to look for roots Rmax = 3 ## maximum value of R to look for roots dR = 0.1 ## the interval over which to discretize the rootfinding f(precursor) = r1(X=precursor).rhs() ## Iterating S from (Smin, Smax) for i in range(0,Smax/dS): ## Iterating the upper bound find_root from (0,Rmax) for j in range(Rmin,Rmax/dR): ## Try to find a root! try: root = find_root(f(i*dS),(j-1)*dR,j*dR) ## If there is no root, catch the exception and pass except(RuntimeError): pass ## If there is a root else: add = 1 ## check and see if we already have something like it for k in range(len(sols_1)): if ( abs(sols_1[k][1]-root) <= (root*.0001) ): ## if we already have it, don't add it! add = 0 ## and break this loop break ## if we don't have it, add it in the form [S,R] if (add == 1): sols_1.append([i*dS,root]) #show(sols_1) 
       
## This section finds roots (of dR/dt) and plots them sols_2 = [] m = 0 n = 0 ad = 0 root = 0 ## S has been swapped for X! Smin = 0 ## minimum value of S to plot Smax = 3 ## maximum value of S to plot dS = 0.02 ## the interval upon which S is plotted Rmin = 0 ## minimum value of R to look for roots Rmax = 3 ## maximum value of R to look for roots dR = 0.1 ## the interval over which to discretize the rootfinding f(precursor) = r2(X=precursor).rhs() ## Iterating S from (Smin, Smax) for i in range(0,Smax/dS): ## Iterating the upper bound find_root from (0,Rmax) for j in range(Rmin,Rmax/dR): ## Try to find a root! try: root = find_root(f(i*dS),(j-1)*dR,j*dR) ## If there is no root, catch the exception and pass except(RuntimeError): pass ## If there is a root else: add = 1 ## check and see if we already have something like it for k in range(len(sols_2)): if ( abs(sols_2[k][1]-root) <= (root*.0001) ): ## if we already have it, don't add it! add = 0 ## and break this loop break ## if we don't have it, add it in the form [S,R] if (add == 1): sols_2.append([i*dS,root]) #show(sols_2) 
       
################################################ #### Unnecessarily Fancy Plotting Stuff #### ################################################ ## Create a plot object g = plot([]) ## Set the plot parameters title = "Substrate Depletion Regulatory Network" ## Graph Title xmin = 0 ## X minimum xmax = 3.5 ## X maximum ymin = 0 ## Y minimum ymax = 1.5 ## Y maximum ## Add a title to the plot g += text(title,(xmax/1.9,ymax*0.95),color='black',fontsize=15) ## Add the desired lines to the plot g += plot_vector_field((r1.rhs(),r2.rhs()), (X,0,3.5), (R,0,1.3)) g += list_plot(sols_0,color='orange',legend_label='S=0.2') g += list_plot(sols_1,color='blue',legend_label='[X]ss') g += list_plot(sols_2,color='red',legend_label='[R]ss') ## For more information on plots in general, evaluate 'plot?' ## For a list of legend options, evaluate 'a.set_legend_options?' ## For a list of Sage predefined colors, evaluate 'sorted(colors)' g.set_axes_range(xmin,xmax,ymin,ymax) g.axes_labels(['[X]','[R]']) g.axes_label_color('grey') g.set_legend_options(ncol=3,borderaxespad=5,back_color='whitesmoke',fancybox=true) show(g)